


2

up to a factor 3 or 4). A second approximation results from adopting a 1D model for the space charge impedance
describing collective effects, which at smaller wavelenghts and low energy is known to be problematic[? ? ]. Finally a
coasting beam approximation is assumed, which limits the applicability to particle dynamics in the longitudinal core
of the physical electron bunches.

To validate the analytical model and provide a check on the simplifying approximations, we also present a comparison
against macroparticle simulations. We find that a reasonable agreement with the theory can be obtained over a
wide spectrum of perturbation wavelengths provided that certain empirical modifications in the parameters for the
longitudinal space charge impedance be introduced. We ascribe the need for this adjustment to the limitations of the
adopted 1D model for space charge.

The paper is organized as follows. After deriving in Sec. II the transfer map for single-particle motion through an rf
structure in the linear approximation, in Sec. ?? we present the small-amplitude perturbation theory. The main result
is the derivation of an integral equation obeyed by the beam bunching function expressing the evolving amplitude of
an initial sinusoidal density modulation through the compressor. We follow with a discussion of the numerical model
used for the macroparticle simulations and a comparison simulations against theory (Sec. ??).

II. SINGLE-PARTICLE DYNAMICS THROUGH AN RF COMPRESSOR

We assume that compression takes place in a travelling wave rf structure. The longitudinal motion of an electron
in such a structure is described by the Hamiltonian H =

√
m2c4 + p2

sc
2 − eφ(s, t) where −e is the electron charge,

s the longitudinal coordinate, and φ = (E0/krf) cos(krfs − ωrft + ψ0) the electric potential, yielding the longitudinal
electric field Es = −∂φ/∂s = E0 sin(krfs − ωrft + ψ0). For simplicity, in the following we assume a phase velocity
ωrf/krf = c for the travelling wave. The canonical equations are readily written: ds/dt = psc

2/
√

m2c4 + p2
sc

2 and
dps/dt = −eE0 sin ψ, where we have introduced the phase ψ = krfs− ωrft + ψ0.

We then change the dynamical coordinates from s and ps to t and the relativistic factor γ =
√

m2c4 + p2
sc

2/mc2,
while turning s into the independent variable. The resulting equations for t(s) and γ(s) read

dt

ds
=

γ

c
√

γ2 − 1
, (1)

dγ

ds
= −αkrf sin ψ, (2)

where we have introduced the parameter α = eE0/(mc2krf).
The orbit for the reference particle is a particular solution of (1) and (2), which we denote as (tr, γr). The orbit of

any other particle can be described in terms of the deviation variables ∆t = t− tr and ∆γ = γ − γr, where (t, γ) are
also solutions of (1) and (2). It is convenient to introduce the space separation ∆z = z − zr between an electron and
the reference particle, in place of ∆t. We have ∆z = −cβ(s)∆t, where cβ(s) is the beam velocity. The negative sign
results from the convention that for a particle in the head of the bunch ∆z > 0. In the following for the purpose of
determining ∆z from ∆t, we will assume that the beam is sufficiently relativistic so that β ' 1, yielding ∆z ' −c∆t.

The equations of motion for the deviation variables ∆z and ∆γ read

d∆z

ds
=

γr√
γ2

r − 1
− γr + ∆γ√

(γr + ∆γ)2 − 1
, (3)

d∆γ

ds
= αkrf [sin(krfs− ωrftr + ψ0)− sin(krfs− ωrftr + krf∆z + ψ0)]. (4)

The first-order solution of the above linear system can be expressed in terms of the transfer matrix M : x(s) = Mx0,
where x(s) = (∆z(s), ∆γ(s)) and x0 = x(s0), with matrix M obeying

dM

ds
= AM (5)

with initial condition M(s0) = 1 and matrix A defined by

A(s) =
(

0 [γ2
r (s)− 1]−3/2

−αk2
rf cos(krfs− ωrftr(s) + ψ0) 0

)
. (6)

Incidentally, the form of the matrix (6) allows us to infer immediately that the transformation M is symplectic.
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FIG. 1: Example of electron reference orbit through an rf compressor obtained by numerical solution of Eq.’s (1) and (2).
The left picture shows the evolution of the relativistic γ-factor, the right picture the relative longitudinal distance between
the reference electron and an imaginary particle travelling at the speed of light. (The relevant parameters are: krf=59.8 m−1,
α=0.82, ψ0=-8◦, γr0=12.)

  

 

FIG. 2: Entries of the transfer matrix M for krf=59.8 m−1, α=0.82, ψ0=-8◦, γr0=12.

Examples of solutions of (1), (2) and (5), for the reference orbit and entries of the transfer matrix M are shown
in Fig.’s ?? and ?? respectively. Here and in the examples to follow we make reference to a 3 m long, S-band,
SLAC-type, travelling wave (TW) section currently in use for the SPARC experiments[? ]. The rf structure frequency
is 2856 MHz (corresponding to λrf = 10.5 cm or krf=59.8 m−1). We assume a E0 = 25 MeV/m peak accelerating
gradient (yielding α=0.82). The rf structure is preceded by a 0.6 m long drift and the electron beam injected with
5.6 MeV kinetic energy (γr0 ' 12). The reference orbit is best represented in terms of the variable ζr, defined as
ζr = s − ctr, (Fig. ??, picture to the right). This quantity expresses the relative longitudinal distance between the
reference electron and an imaginary particle travelling at the speed of light. The initial conditions were specified so
that as the reference particle enters the structure (s = 0.6 m) we have ζr = 0, i.e. the rf phase is ψ = ψ0.

III. LINEAR THEORY

In the following we will refer to the dynamical variables in vector notation as x = (∆z, ∆γ). Moreover, to simplify
notation, we will use z to denote ∆z and denote ∆γ with p, i.e. x = (z, p).
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We assume that the beam distribution f(x0; s0) = f0(x0; s0)+f1(x0; s0) at the entrance of the rf compressor s = s0

consists of a zero-order smooth density, uniform in z and Gaussian in p with a chirp h0

f0(x0; s0) =
1√

2πσp

e−(p0−h0z0)
2/2σ2

p , (7)

and a first-order perturbation f1(x0; s0). The normalization of the distribution function is chosen so that
n0dz

∫∞
−∞ dp0f(x; s) yields the number of particles in the interval dz, where n0 is the beam line density.

Let us consider the evolution of the unperturbed beam density first. The beam density function f0(xs; s) at s
is related to the beam density f0(x0; s0) at s0 by f(xs, s) = f(M−1xs; s0). Here and in the following we use M ,
M(s), or M(s0 → s) interchangeably to denote the transfer matrix solution of (5) from s = s0 to s and use the
notation M(s′ → s) to represent the matrix advancing the linear solutions of (3) and (4) from s′ ≥ s0 to s ≥ s′, i.e.
M(s′ → s) = M(s)M−1(s0 → s′)

The normalized charge density evolves from ρ(z0; s0) =
∫∞
−∞ dp0f0(x0; s0) = 1 at s = s0 to

ρ(zs; s) =
∫ ∞

−∞
f0(xs, s)dps =

1
|M11(s) + h0M12(s)| ≡ C(s). (8)

The last equality in the above equation identifies the compression factor C = C(s). In writing (??) we made use of
the symplectic property of the matrix M .

The effect of collective forces described by an impedance Z(k; s) (to be specified later) is to change the particle
energy according to

dp

ds
= F (ρ̃, zs; s) ≡ − 4πI0

IAZ0

∫ ∞

−∞
dkeikzsZ(k; s)ρ̃(k; s) (9)

where I0 = ecn0 is the electron beam current, IA = ce/re ' 17kA the Alfvén current, and Z0 the vacuum impedance,
with

ρ̃(k; s) =
1
2π

∫ ∞

−∞
dzse

−ikzs

∫ ∞

−∞
dpf(xs; s) (10)

being the Fourier Transform (FT) of the charge density ρ(zs, s) at s.
The starting point of our analysis is the linearized Vlasov equation expressed in the integral form[? ]:

f1(xs; s) = f1(x0; s0)−
∫ s

s0

ds′F (ρ̃1; zs′ ; s′)
∂f0(xs′ ; s′)

∂ps′
, (11)

with the collective force F depending on the FT ρ̃1 of the first-order density perturbation.
Starting from (??) our goal is to derive an equation for ρ̃1. To this end it is convenient to think of both sides of

(??) as functions of the dynamical variables at current position s:

f1(xs; s) = f1(x0(xs); s0)−
∫ s

s0

ds′F (ρ̃1; zs′ ; s′)
∣∣∣
zs′=zs′ (xs)

∂f0(xs′ ; s′)
∂ps′

∣∣∣
xs′=xs′ (xs)

. (12)

where x0(xs) denotes the linear transformation x0 = [M(s0 → s)]−1xs and similarly xs′(xs) = [M(s′ → s)]−1xs.
The next step is to make a more definite assumption about the form of the initial perturbation. We assume an

expression of the form

f1(x0; s0) = Aeik0z0
e−(p0−h0z0)

2/2σ2
p

√
2πσp

, (13)

i.e. consisting of a sinusoidal perturbation to the charge density (while the p density is the same as in the unperturbed
distribution). As usual in this kind of calculations the physically meaningful component is the real part of the complex
quantity (??).

We are now ready to integrate both sides of Eq. (??) over the phase space after multiplying by e−ikzs . By definition,
the FT of the LHS of Eq. (??) yields ρ̃1(k; s). The FT of the first term on the RHS, which we denote with I1, requires
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more work. First, we carry out the transformation of variables xs → x0 and exploit symplecticity d2xs = d2x0 to
write

I1 =
1
2π

∫ ∞

−∞
dz0

∫ ∞

−∞
dp0f1(x0; s0)e−ikzs(x0), (14)

where zs(x0) = [Mx0]1 = M11z0 + M12p0. We then we insert expression (??) into (??)

I1 =
A

2π
√

2πσp

∫ ∞

−∞
dp0

∫ ∞

−∞
dz0e

−(p0−hz0)
2/2σ2

peik0z0e−ik(M11z0+M12p0), (15)

and introduce the change of variable t = p0 − h0z0, yielding

I1 =
A

2π
√

2πσp

∫ ∞

−∞
dz0e

iz0(k0−k/C)

∫ ∞

−∞
dte−t2/2σ2

peikM12t

= Aδ(k0 − k/C(s))e−(kM12σp)2/2, (16)

with δ(·) denoting the Dirac function.
As for the second term on the RHS of Eq. (??) we have:

I2 = − 1
2π

∫
d2xse

−ikzs

∫ s

s0

ds′F (ρ̃1; zs′ ; s′)
∣∣∣
zs′=zs′ (xs)

∂f0(xs′ ; s′)
∂ps′

∣∣∣
xs′=xs′ (xs)

= − 1
2π

∫
d2xs′e

−ikzs(xs′ )
∫ s

s0

ds′F (ρ̃1; zs′ ; s′)
∂f0(xs′ ; s′)

∂ps′

= − ik

2π

∫ s

s0

ds′M12(s′ → s)
∫

d2xs′F (ρ̃1; zs′ ; s′)f0(xs′ ; s′)e−ikzs(xs′ ) (17)

The second equality above follows from a change of variables, the third from an integration by parts and zs(xs′) =
M11(s′ → s)zs′ + M12(s′ → s)ps′ . A further change of variables xs′ → x0 yields:

I2 = − ik

2π

∫ s

s0

ds′M12(s′ → s)
∫

d2x0f0(x0; s0)F (ρ̃1; zs′(x0); s′)e−ikzs(xs′ (x0)), (18)

where we have made use of f0(xs′ ; s′) = f0(x0; s0). Observe that in the argument of the exponential function of the
above expression we have zs(xs′(x0)) = [M(s0 → s)x0]1 = M11z0 + M12p0.

Using the expression (??) for the collective force we find

I2 = 4πi
I0

IAZ0

k

2π

∫ ∞

−∞
dk′

∫ s

s0

ds′M12(s′ → s)Z(k′, s′)ρ̃1(k′, s′)
∫ ∞

−∞
dz0

∫ ∞

−∞
dp0f0(x0; s0)eik′zs′ (x0)−ikzs(x0). (19)

Again, we introduce the change of variable p0 → p0 = t + hz0 and observe that

k′zs′(x0)− kzs(x0)
∣∣∣
p0→p0=t+hz0

=
(

k′

C(s′)
− k

C(s)

)
z0 +

(
k′

M12(s′)
− k

M12(s)

)
t. (20)

The integral on z0 in (??) yields a Dirac function, allowing for a straightforward integration on k′. After integration
on t, we obtain

I2 = 4πi
I0k

IAZ0∫ s

s0

ds′C(s′)M12(s′ → s)Z(k′, s′)ρ̃1(k′; s′)e−[k′M12(s
′)−kM12(s)]

2σ2
p/2

∣∣∣∣∣
k′=kC(s′)/C(s)

. (21)

Finally, upon combining the various expressions evaluated so far we arrive at the following integral equation for the
Fourier components of the first-order density perturbation:

ρ̃1(k; s) = e−[C(s)k0M12σp]2/2Aδ(k0 − k/C(s)) +
∫ s

s0

ds′K̂(s′, s)ρ̃1(k′; s′) (22)
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with kernel

K̂(s′, s) = 4πi
I(s′)
IA

kM12(s′ → s)
Z(k′, s′)

Z0
e−[k′M12(s

′)−kM12(s)]
2σ2

p/2

∣∣∣∣∣
k′=kC(s′)/C(s)

, (23)

where I(s′) = I0C(s′) is the beam current at s′. We look for solutions of (??) in the space of generalized functions
(distributions). Such solutions will have the form

ρ̃1(k; s) = b(k; s)δ
(

k0 − k

C(s)

)
= b(k; s)C(s)δ (C(s)k0 − k) , (24)

with the ordinary functions b obeying the equation

b(C(s)k0; s) = Ae−[C(s)k0M12σp]2/2 +
∫ s

s0

ds′K(s′, s)b(C(s′)k0; s′), (25)

with kernel K(s′, s) obtained from (??) with the substitution k′ → k0C(s′).
The integral equation (??) is our main result. Somewhat unexpectedly, but not too surprisingly, (??) turns out to

be formally identical to the equation describing bunching in magnetic compressors[? ? ]. We define the linear gain
as the ratio of the amplitude of the perturbation at the exit s = sf to that at the entrance (s = s0):

g(k0; sf ) =
|b(C(s)k0; sf )|

|A| . (26)

To summarize the meaning of the calculation carried out in this Section: in linear approximation a sinusoidal
perturbation with wavenumber k0 to a beam charge density at the entrance of an rf compressor will maintain its
sinusoidal form while the wavenumber evolves according to k = C(s)k0. The quantity b(k; s) or ‘bunching function’,
representing the amplitude of the sinusoidal perturbation relative to the local beam density ρ(s) = C(s)ρ(s0), is
determined by solving the integral equation (??), where A = b(k0; s0) is the perturbation initial amplitude.

Collective effects in an rf compressor are largely dominated by space charge. We model these effects by means of
an effective impedance[? ? ] relating the longitudinal component of the electric field and longitudinal charge-density
fluctuations in the frequency domain. In our model we neglect the possible dependence of the longitudinal component
of the electric field on the radial coordinate and adopt a 1D expression for the space-charge impedance of the form[?
]

Z(k, s) =
iZ0

πγrb

1− 2I1(ξ)K1(ξ)
ξ

∣∣∣∣
ξ=krb/γ

, (27)

where Z0 ' 120π is the vacuum impedance, and I1 and K1 are the modified Bessel functions of first and second kind.
Expression (??) is obtained[? ] from transverse averaging of the longitudinal component of the electric filed of an

infinitely long beam with circular cross-section of radius rb (and uniform transverse density) perturbed by a small
longitudinal modulation of wavenumber k. In principle, the radial dependence of the longitudinal electric field could
be accounted for in the present framework but at the cost of increasing the dimensionality[? ] of the integral equation
(??). Notice that in (??) the dependence on the longitudinal coordinate s is through the parameter rb = rb(s),
assumed to be known.

In Fig.’s ?? and ?? we show a numerical example for a model of beam line consisting of a 1 m drift followed by a
3 m rf compressor. The beam injected at 5.6 MeV energy with I0 = 100 A peak current and vanishing uncorrelated
energy spread. We assume a beam transversely uniform with circular cross section with radius rb = 0.5 mm remaining
constant through the beam line. The compression factor at the exit of the rf structure is 1.87. The gain curve as a
function of the wavelength of the initial perturbation is reported in Fig. ??, and shows a maximum value of about
0.7 in the λ ' 300µm region. The gain is <1 in the whole range of modulation wavelengths considered. Gains larger
than unity could be observed but only in the presence of substantially higher current or compression factor.

Because of space charge an initial modulation in the charge density will induce an energy modulation along the
beam. We are interested in determining to first order the amplitude of this latter modulation. To this end we introduce
a new set of dynamical variables to remove the (in general nonvanishing) correlation energy-position

z̃ = z

p̃ = p− hsz, (28)
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FIG. 3: Compression factor along the beam line. The value at exit is 1.87.

FIG. 4: a) linear gain at the exit of the rf compressor, b) linear gain as a function of the longitudinal position for a selected
(λ = 100 µm) modulation wavelength.

and express the distribution function f(x0; s) in terms of these new variables. In the above equation hs is the
energy/positon correlation at s, which is related to the initial correlation h0 at s0 by hs = (M21 + h0M22)/(M11 +
h0M12).

Following the assumptions made in the previous section, we consider a beam distribution function f = f0 + f1 in
the form of the sum of a uniform zero-order density f0 and a first-order perturbation f1. The amplitude of the energy
modulation is obtained by taking the FT the energy centroid along the beam 〈p̃〉 =

∫
f(z̃, p̃; s)p̃dp̃/

∫
f(z̃, p̃; s)dp̃, a

function of z̃:

∆p̃ =
1
2π

∫
dz̃e−ikz̃〈p̃〉 ' 1

2π

∫
dz̃e−ikz̃

∫
f1(z̃, p̃; s)p̃dp̃∫
f0(z̃, p̃; s)dp̃

, (29)

where the last equation follows from first-order approximation and
∫∞
−∞ f0(z̃, p̃; s)p̃dp̃ = 0, [see Eq. (??)]. The

normalization factor
∫

f0(z̃, p̃; s)dp̃ is just the compression factor C(s). To calculate
∫

f1(z̃, p̃; s)p̃dp̃ we make use of
the first-order perturbation equation (??) for f1, yielding

∆p̃ = − 1
2πC(s)

∫
p̃sdp̃s

∫
dz̃se

−ikz̃s

∫ s

s0

ds′F (ρ̃1; zs′ ; s′)
∂f0(xs′ ; s′)

∂ps′
. (30)

After some some algebra, here omitted for brevity, we find

∆p̃ =
4πI0

IAZ0
δ(k − k0C(s))C(s)

∫ s

s0

ds′b(k′; s′)Z(k′, s′)e−[k′M12(s
′→s)σp]2

×{
1− [k′M12(s′ → s)σp]2

}
∣∣∣∣∣
k′=k0C(s′)

, (31)
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FIG. 5: Amplitude of the energy modulation amplitude along the rf compressor resulting from an initial density modulation
with 10% amplitude relative to an initial current I0 = 100A. Other beam and rf compressor parameters as in Fig. ?? and ??.

with the bunching factor b(k0C(s′); s′) determined by solving Eq. (??).
In Fig. ?? we show two examples of energy modulations resulting from sinusoidal density perturbations with initial

relative amplitude A = 0.1 and wavelengths λ = 75 and 150 µm.

IV. VALIDATION AGAINST MACROPARTICLE SIMULATIONS

As a way to validate the model presented in the previous section, we carried out macroparticle simulations using
the code TSTEP[? ], a derivative of PARMELA[? ]. We considered the evolution of a 1 nC idealized flat-top beam
spanning a 10◦ rf phase at 2856 MHz (corresponding to about 3 mm and I0 = 100 A peak current) and a range of
initial charge-density sinusoidal perturbations with wavelength λ between 50 and 300µm. The upper limit of this range
is determined by the need to consider wavelengths small enough compared to the bunch length so that the coasting
beam approximation assumed in the analytical model may apply. The smallest modulation wavelength is limited by
the statistical noise associated with use of a relatively small number of macroparticles. In the simulations we used
up to 4.5×106 macro-particles, resulting in an acceptable compromise between numerical accuracy and computation
time. The amplitude of the initial sinusoidal perturbation was set to A = 10%.

The electron beam has vanishing initial energy-phase correlation and uncorrelated energy spread [i.e. h0 = 0 and
σp = 0, see Eq. ??)].

We considered the 3 m long rf structure mentioned at the end of Sec. II preceded by a 0.6 m long drift. The
presence of the drift is a realistic feature of any physical set-up as the rf structure for compression compressor
requires a certain separation from the exit of the gun. However, in these simulations, the exact value of the drift
length was chosen to correspond (in the range of wavelength we considered and adopted initial beam conditions) to
roughly a quarter wavelength of longitudinal plasma oscillation as this choice tends to maximize the amplitude of the
modulation amplitude at the exit of the compressor (having started with pure density perturbations, i.e. no initial
energy modulation).

The linear gain is calculated as the ratio between the amplitudes of the charge density perturbation at the exit of
the compressor and entrance of the leading 0.6 m drift. Care was taken to limit the analysis of the numerical data
to the core of the bunch to minimize edge effects. The space-charge forces were calculated by solving the Poisson
equation on a grid with a 5 mm longitudinal span and number of mesh cells varying between 1200 and 2400 along
the longitudinal coordinate.

We start the simulations with a beam with transverse uniform density and circular cross-section of initial radius
rb = 2σx = 2σy = 2 mm and a convergent envelope drb/ds < 0. It turns out that the plasma oscillation wavelength
has a fairly strong dependence on the beam transverse radius rb and is therefore affected by the exact value of the
initial beam convergence. This is exemplified in Fig. ?? where we show how different choices of the initial transverse
conditions for the beam envelope affect the subsequent evolution of the beam radius (picture to the left) and the
location of the first minimum for the linear gain for an initial perturbation of wavelength λ = 100µm (figure to the
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FIG. 6: Picture to the left: evolution of the transverse rms beam size σx for a converging (solid line) and diverging (dashed
line) beam. Picture to the right: corresponding linear gains for an initial modulation of wavelength λ = 100 µm.

FIG. 7: Longitudinal phase space (left and center pictures) and bunch current distribution at the entrance of the leading drift
(upper pictures) and entrance of the rf strucure located 0.6 m downstream (lower pictures). The wavelength of the initial
density modulation is λ = 150µm. The longitudinal space coordinate is expressed in terms of rf phase with 10◦ rf phase
corresponding to about 3 mm.

right). The minimum in the linear gain corresponds to a quarter of plasma oscillation wavelength from the entrance
of the drift, which is where the initial density modulation is converted into energy modulation. See evidence of this in
Fig.??. For the remaining simulations presented in this paper we adopted the initial conditions for the beam envelope
corresponding to the solid line in the left picture of Fig. ??. For simplicity, in the simulations we did not include
solenoidal focusing along the rf structure, which would be required for emittance compensation[? ], and let the beam
expand freely.

Incidentally, notice that in the figures in this section starting from Fig. ?? the variable z in the abscissa is the same
as the arclength coordinate s introduced in Sec. II.

Compression is controlled by moving the linac rf phase away from the crest toward the zero crossing of the rf field.
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FIG. 8: Gain vs. z for rf phase Ψ0 = −82◦ (C∼2) with space charge on and off in the rf structure.

In this section we refer to the rf phase as defined as Ψ = −90◦ − ψ, where ψ is the phase defined in Sec. II).
To highlight the importance of a full account of space-charge effects we show a comparison between results obtained

with two different settings where collective forces are turned on and off in the rf structure (while they are included
through the leading drift in both cases), see Fig. ??. The initial rf phase is Ψ0 = −82◦ corresponding to a compression
factor ∼2). It is seen that neglecting space charge in the rf structure (data points with round markers) leads to a
gross overestimate of the gain.

As the beam size variation affects in a sensitive way the results (see Fig. ??), it is important that when we make
comparison with the theory we account for the evolution of the beam radius along s. To this end a high-order
polynomial interpolation for the rms transverse size as a function of s was carried out from data points extracted from
the simulations. From analysis of the simulation data it was found that the best agreement between the analytical
model of Sec. ?? and simulations is obtained when in the expression for the impedance (??) we use the relationship
rb = aσx with the factor a defined as a = 1.95−0.001×λ[µm] instead of a = 2, as it would be expected for transversely
uniform beams. The good agreement between simulations (solid line) and theory (dots), including the empirically
adjusted factor a is shown in Fig. ??. The good agreement also extends to the determination of the compression
factor, Fig. ??, (with the compression factor from the simulation data calculated as the ratio σz0/σz between the
initial σz0 and final σz rms bunch lengths).

Further simulation-vs.-theory comparisons are reported in Fig.’s ?? and ??. In particular in Fig. ?? we show the
linear gain at the exit of the compressor over a range of perturbation wavelengths for a uncompressed (Φ0 = 0◦)
and compressed C=2 (Φ0 = −82◦) beam. Finally in Fig. ?? we report the evolution of the amplitude of the energy
modulation induced by an initial density modulation with 74 µm wavelength. The energy modulation amplitude was
retrieved from the simulation data by first removing the correlation phase-energy in a window selected around the
beam core in the longitudinal phase space and then carrying out a sinusoidal fit. An example of longitudinal beam
phase space exhibiting the energy modulation is shown in Fig. ??. Notice that as it evolves the beam develops a
finite energy spread due to the radial dependence of the space-charge fields, which is missed by the 1D model of
impedance adopted in our linear model. Nonetheless, the linear model, including the empirical adjustment of the
a-factor mentioned earlier, appears to quite well the amplitude of the energy modulation.

V. CONCLUSIONS

In this paper we have derived a linear theory for the amplitude gain of charge density modulations of a beam passing
through an rf compression system and have discussed a comparison against results from macro-particle simulations
carried out with the code TSTEP. A satisfactory agreement with the linear theory is found when a parameter in the
adopted 1D model for space charge effects is adjusted to account for an empirically determined dependence on the
perturbation wavelength.

The numerical solutions of the linearized equations and the TSTEP simulations indicate that for parameters of
interest in typical FEL applications, the amplification of small initial density perturbations through an rf compressor
tends to be quite modest (relative to the peak current) if not outright smaller than unity (i.e. implying damping of
the initial perturbation) even in the absence of any uncorrelated energy-spread induced mixing. This result is not
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FIG. 9: Comparison between TSTEP simulations and linear theory for Ψ0 = −82◦ rf phase. The linear gain along the
compressor is shown for four different initial modulation wavelengths: a) 50 µm, b) 75 µm, c) 100 µm, d) 150 µm. The dashed
line and solid lines were obtaining by setting a = 2 and a = 1.95− 0.001λ[µm] respectively in the linear theory.

completely unexpected. We know, for example, that in a low-energy beam drifting in free space, and hence without
compression, the amplitude of longitudinal plasma oscillations remains constant. It turns out that for moderate
compression, velocity bunching changes the dynamics of longitudinal plasma oscillations from the case of free-space
drifting only mildly – the main difference being in the adiabatic lengthening of the plasma oscillation wavelength and
reduced strength of the space charge forces as the beam undergoes acceleration during compression. These results
do not imply that the dynamics of small-amplitude density perturbations in the rf compressor should be neglected
altogether as these perturbations can seed an instability downstream if further compression by magnetic chicanes is
applied. Indeed, a scenario in which rf compression is supplemented by magnetic compression represents the most
likely mode of operation envisioned for the accelerator drivers of FEL-based 4th generation light sources[? ]. We
expect that the theory elaborated in this paper will represent a useful tool in the evaluation of the compression
schemes for these FEL sources. Finally, we should mention the possible relevance of our finding in connection with
recent investigations of noise suppression in FEL injectors, see Gover et al.[? ] and Nauser et al.[? ].
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